7.2.6 Convergence in Mean

One way of interpreting the convergence of a sequence $X_n$ to $X$ is to say that the ''distance'' between $X$ and $X_n$ is getting smaller and smaller. For example, if we define the distance between $X_n$ and $X$ as $P\big(|X_n-X| \geq \epsilon \big)$, we have convergence in probability. One way to define the distance between $X_n$ and $X$ is

\begin{align}%\label{eq:union-bound} E\left(|X_n-X|^{\large r}\right), \end{align}

where $r \geq 1$ is a fixed number. This refers to convergence in mean. (Note: for convergence in mean, it is usually required that $E|X^{\large r}_n|<\infty$.) The most common choice is $r=2$, in which case it is called the mean-square convergence. (Note: Some authors refer to the case $r=1$ as convergence in mean.)

Convergence in Mean

Let $r \geq 1$ be a fixed number. A sequence of random variables $X_1$, $X_2$, $X_3$, $\cdots$ converges in the $r$th mean or in the $L^{\large r}$ norm to a random variable $X$, shown by $ X_n \ \xrightarrow{L^{\large r}}\ X$, if \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} E\left(|X_n-X|^{\large r}\right)=0. \end{align} If $r=2$, it is called the mean-square convergence, and it is shown by $ X_n \ \xrightarrow{m.s.}\ X$.


Example

Let $X_n \sim Uniform\left(0, \frac{1}{n}\right)$. Show that $ X_n \ \xrightarrow{L^{\large r}}\ 0$, for any $r \geq 1$.

  • Solution
    • The PDF of $X_n$ is given by \begin{equation} \nonumber f_{X_n}(x) = \left\{ \begin{array}{l l} n & \quad 0 \leq x \leq \frac{1}{n} \\ & \quad \\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation} We have \begin{align}%\label{eq:union-bound} E\left(|X_n-0|^{\large r}\right)&=\int_{0}^{\frac{1}{n}} x^{\large r} n \hspace{10pt} dx\\ &= \frac{1}{(r+1) n^{\large r}} \rightarrow 0, \qquad \textrm{ for all }r\geq 1. \end{align}



Theorem

Let $1 \leq r \leq s$. If $ X_n \ \xrightarrow{L^{\large s}}\ X$, then $ X_n \ \xrightarrow{L^{\large r}}\ X$.

  • Proof
    • We can use Hölder's inequality, which was proved in Section 6.2.6. Hölder's Inequality states that \begin{align}%\label{} E |XY| \leq \big(E|X|^p\big)^{{\large \frac{1}{p}}} \big(E|Y|^q\big)^{{\large \frac{1}{q}}}, \end{align} where $1 < p$ , $q < \infty$ and ${\large \frac{1}{p}}+{\large \frac{1}{q}}= 1$. In Hölder's inequality, choose \begin{align}%\label{} X&=|X_n-X|^{\large r}, \\ Y&=1,\\ p&=\frac{s}{r}>1. \end{align} We obtain \begin{align}%\label{} E |X_n-X|^{\large r} \leq \big(E|X_n-X|^{\large s}\big)^{{\large \frac{1}{p}}}. \end{align} Now, by assumption $ X_n \ \xrightarrow{L^{\large s}}\ X$, which means \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} E\left(|X_n-X|^{\large s}\right)=0. \end{align} We conclude \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} E\left(|X_n-X|^{\large r}\right) & \leq \lim_{n \rightarrow \infty} \big(E|X_n-X|^{\large s}\big)^{\frac{1}{p}}\\ &= 0. \end{align} Therefore, $ X_n \ \xrightarrow{L^{\large r}}\ X$.


As we mentioned before, convergence in mean is stronger than convergence in probability. We can prove this using Markov's inequality.



Theorem

If $ X_n \ \xrightarrow{L^{\large r}}\ X$ for some $r\geq 1$, then $ X_n \ \xrightarrow{p}\ X$.

  • Proof
    • For any $\epsilon>0$, we have \begin{align}%\label{} P\big(|X_n-X| \geq \epsilon \big)&= P\big(|X_n-X|^{\large r} \geq \epsilon^{\large r} \big) & \textrm{ (since $r \geq 1$)}\\ & \leq \frac{E|X_n-X|^{\large r}}{\epsilon^{\large r}} &\textrm{ (by Markov's inequality)}. \end{align} Since by assumption $\lim \limits_{n \rightarrow \infty} E\left(|X_n-X|^{\large r}\right)=0$, we conclude \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} P\big(|X_n-X| \geq \epsilon \big)=0, \qquad \textrm{ for all }\epsilon>0. \end{align}


The converse of Theorem 7.4 is not true in general. That is, there are sequences that converge in probability but not in mean. Let us look at an example.



Example

Consider a sequence $\{X_n, n=1,2,3, \cdots \}$ such that

\begin{equation} \nonumber X_n = \left\{ \begin{array}{l l} n^2 & \qquad \textrm{with probability } \frac{1}{n} \\ & \qquad \\ 0 & \qquad \textrm{with probability } 1-\frac{1}{n} \end{array} \right. \end{equation} Show that
  1. $X_n \ \xrightarrow{p}\ 0$.
  2. $X_n$ does not converge in the $r$th mean for any $r \geq 1$.
  • Solution
      1. To show $X_n \ \xrightarrow{p}\ 0$, we can write, for any $\epsilon>0$ \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} P\big(|X_n| \geq \epsilon \big)&=\lim_{n \rightarrow \infty} P(X_n=n^2)\\ &= \lim_{n \rightarrow \infty} \frac{1}{n}\\ &=0. \end{align} We conclude that $X_n \ \xrightarrow{p}\ 0$.
      2. For any $r \geq 1$, we can write \begin{align}%\label{eq:union-bound} \lim_{n \rightarrow \infty} E\left(|X_n|^{\large r}\right)&=\lim_{n \rightarrow \infty} \left( n^{2r} \cdot \frac{1}{n} +0 \cdot \left(1-\frac{1}{n}\right) \right)\\ &=\lim_{n \rightarrow \infty} n^{2r-1}\\ \ &=\infty \qquad (\textrm{since $r \geq 1$}). \end{align} Therefore, $X_n$ does not converge in the $r$th mean for any $r \geq 1$. In particular, it is interesting to note that, although $X_n \ \xrightarrow{p}\ 0$, the expected value of $X_n$ does not converge to $0$.




The print version of the book is available on Amazon.

Book Cover


Practical uncertainty: Useful Ideas in Decision-Making, Risk, Randomness, & AI

ractical Uncertaintly Cover