11.3.3 The Generator Matrix
Example
Explain why the following approximations hold:
- $p_{jj}(\delta) \approx 1+g_{jj} \delta$, for all $j \in S$.
- $p_{kj}(\delta) \approx \delta g_{kj}$, for $k \neq j$.
- Solution
-
Let $\delta$ be small. Equation 11.7 can be written as
\begin{align*}
p_{jj}(\delta) &\approx 1-\lambda_j \delta \\
&=1+g_{jj} \delta.
\end{align*}
Also, we can approximate $p_{kj}(\delta)=P(X(\delta)=j|X(0)=k)$ as follows. This probability is approximately equal to the probability that we have a single transition from state $k$ to state $j$ in the interval $[0,\delta]$. Note that the probability of more than one transition is negligible if $\delta$ is small (refer to the Poisson process section). Thus, we can write
\begin{align*}
p_{kj}(\delta)&=P(X(\delta)=j|X(0)=k)\\
&\approx P(X(\delta) \neq k |X(0)=k) p_{kj}\\
&\approx \lambda_k \delta p_{kj}\\
&=\delta g_{kj}, \textrm{ for }k \neq j.
\end{align*}
We can state the above approximations more precisely as
- $g_{jj}=-\lim_{\delta \rightarrow 0^{+}} \left[ \frac{1-p_{jj}(\delta)}{\delta}\right], \textrm{ for all } j \in S$;
- $g_{kj}= \lim_{\delta \rightarrow 0^{+}} \left[ \frac{p_{kj}(\delta)}{\delta} \right]$, for $k \neq j$.
-
Let $\delta$ be small. Equation 11.7 can be written as
\begin{align*}
p_{jj}(\delta) &\approx 1-\lambda_j \delta \\
&=1+g_{jj} \delta.
\end{align*}
Also, we can approximate $p_{kj}(\delta)=P(X(\delta)=j|X(0)=k)$ as follows. This probability is approximately equal to the probability that we have a single transition from state $k$ to state $j$ in the interval $[0,\delta]$. Note that the probability of more than one transition is negligible if $\delta$ is small (refer to the Poisson process section). Thus, we can write
\begin{align*}
p_{kj}(\delta)&=P(X(\delta)=j|X(0)=k)\\
&\approx P(X(\delta) \neq k |X(0)=k) p_{kj}\\
&\approx \lambda_k \delta p_{kj}\\
&=\delta g_{kj}, \textrm{ for }k \neq j.
\end{align*}
We can state the above approximations more precisely as
For a continuous-time Markov chain, we define the generator matrix $G$. The $(i,j)$th entry of the transition matrix is given by \begin{align} \nonumber g_{ij} = \left\{ \begin{array}{l l} \lambda_i p_{ij} & \quad \textrm{ if }i \neq j \\ & \quad \\ -\lambda_i & \quad \textrm{ if }i = j \end{array} \right. \end{align}
Example
Consider the continuous Markov chain of Example 11.17: A chain with two states $S=\{0, 1\}$ and $\lambda_0=\lambda_1=\lambda>0$. In that example, we found that the transition matrix for any $t \geq 0$ is given by \begin{equation} \nonumber P(t) = \begin{bmatrix} \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} \\[5pt] \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} \\[5pt] \end{bmatrix}. \end{equation}
- Find the generator matrix $G$.
- Show that for any $t \geq 0$, we have \begin{align*} P'(t)= P(t) G= G P(t), \end{align*} where $P'(t)$ is the derivative of $P(t)$.
- Solution
-
- First, we have \begin{align*} g_{00}&=-\lambda_0 \\ &=-\lambda,\\ g_{11}&=-\lambda_1 \\ &=-\lambda. \end{align*} The transition matrix for the corresponding jump chain is given by \begin{equation} \nonumber P = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \end{equation} Therefore, we have \begin{align*} g_{01}&=\lambda_0 p_{01} \\ &=\lambda,\\ g_{10}&=\lambda_1 p_{10}\\ &=\lambda. \end{align*} Thus, the generator matrix is given by \begin{align*} G= \begin{bmatrix} -\lambda & \lambda \\[5pt] \lambda & -\lambda \\[5pt] \end{bmatrix}. \end{align*}
- We have \begin{align*} P'(t)= \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\[5pt] \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \\[5pt] \end{bmatrix}, \end{align*} where $P'(t)$ is the derivative of $P(t)$. We also have \begin{equation} \nonumber P(t) G= \begin{bmatrix} \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} \\[5pt] \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} \\[5pt] \end{bmatrix} \begin{bmatrix} -\lambda & \lambda \\[5pt] \lambda & -\lambda \\[5pt] \end{bmatrix}= \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\[5pt] \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \\[5pt] \end{bmatrix}, \end{equation} \begin{equation} \nonumber G P(t) = \begin{bmatrix} -\lambda & \lambda \\[5pt] \lambda & -\lambda \\[5pt] \end{bmatrix} \begin{bmatrix} \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} \\[5pt] \frac{1}{2}-\frac{1}{2}e^{-2\lambda t} & \frac{1}{2}+\frac{1}{2}e^{-2\lambda t} \\[5pt] \end{bmatrix} = \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\[5pt] \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \\[5pt] \end{bmatrix}. \end{equation} We conclude \begin{align*} P'(t)= P(t) G= G P(t). \end{align*}
-
The equation $P'(t)= P(t) G= G P(t)$ (in the above example) is in fact true in general. To see the proof idea, we can argue as follows. Let $\delta$ be small. By Example 11.20, we have \begin{align*} p_{jj}(\delta) &\approx 1+g_{jj} \delta,\\ p_{kj}(\delta)&\approx \delta g_{kj}, \quad \textrm{for } k \neq j. \end{align*} Using the Chapman-Kolmogorov equation, we can write \begin{align*} P_{ij}(t+\delta) &=\sum_{k \in S} P_{ik}(t)p_{kj}(\delta) \\ &=p_{ij}(t)p_{jj}(\delta)+\sum_{k \neq j} P_{ik}(t)p_{kj}(\delta)\\ &\approx p_{ij}(t)(1+g_{jj} \delta)+\sum_{k \neq j} P_{ik}(t)\delta g_{kj}\\ &= p_{ij}(t)+ \delta p_{ij}(t) g_{jj} + \delta \sum_{k \neq j} P_{ik}(t) g_{kj}\\ &= p_{ij}(t)+ \delta \sum_{k \in S} P_{ik}(t) g_{kj}. \end{align*} Thus, \begin{align*} \frac{P_{ij}(t+\delta)-p_{ij}(t)}{\delta} \approx \sum_{k \in S} P_{ik}(t) g_{kj}, \end{align*} which is the $(i,j)$th element of $P(t)G$. The above argument can be made rigorous.
The forward equations state that $$P'(t)=P(t)G,$$ which is equivalent to $$p'_{ij}(t)=\sum_{k \in S} p_{ik}(t) g_{kj}, \textrm{ for all }i,j \in S.$$
The backward equations state that $$P'(t)=GP(t),$$ which is equivalent to $$p'_{ij}(t)=\sum_{k \in S} g_{ik} p_{kj}(t), \textrm{ for all }i,j \in S.$$
Consider a continuous Markov chain $X(t)$ with the state space $S$ and the generator Matrix $G$. The probability distribution $\pi$ on $S$ is a stationary distribution for $X(t)$ if and only if it satisfies
\begin{align*}
\pi G=0.
\end{align*}
Proof:
For simplicity, let's assume that $S$ is finite, i.e., $\pi=[\pi_0, \pi_1, \cdots, \pi_r]$, for some $r \in \mathbb{N}$. If $\pi$ is a stationary distribution, then $\pi=\pi P(t)$. Differentiating both sides, we obtain
\begin{align*} 0&= \frac{d}{dt} [\pi P(t)] \\ &= \pi P'(t)\\ &=\pi G P(t) \quad (\textrm{backward equations}) \end{align*} Now, let $t=0$ and remember that $P(0)=I$, the identity matrix. We obtain \begin{align*} 0=\pi G P(0)=\pi G. \end{align*} Next, let $\pi$ be a probability distribution on $S$ that satisfies $\pi G=0$. Then, by backward equations, \begin{align*} P'(t)&= G P(t). \end{align*} Multiplying both sides by $\pi$, we obtain \begin{align*} \pi P'(t)=\pi G P(t)=0. \end{align*} Note that $\pi P'(t)$ is the derivative of $\pi P(t)$. Thus, we conclude $\pi P(t)$ does not depend on $t$. In particular, for any $t \geq 0$, we have \begin{align*} \pi P(t)=\pi P(0)=\pi. \end{align*} Therefore, $\pi$ is a stationary distribution.Example
The generator matrix for the continuous Markov chain of Example 11.17 is given by \begin{align*} G= \begin{bmatrix} -\lambda & \lambda \\[5pt] \lambda & -\lambda \\[5pt] \end{bmatrix}. \end{align*} Find the stationary distribution for this chain by solving $\pi G=0$.
- Solution
- We obtain \begin{equation} \nonumber \pi G = [\pi_0, \pi_1] \begin{bmatrix} -\lambda & \lambda \\[5pt] \lambda & -\lambda \\[5pt] \end{bmatrix} = 0. \end{equation} which results in \begin{align*} \pi_0=\pi_1. \end{align*} We also need \begin{align*} \pi_0+\pi_1=1. \end{align*} Solving the above equations, we obtain \begin{align*} \pi_0=\pi_1=\frac{1}{2}. \end{align*}