Review of Fourier Transform
Fourier transform \[ X(f) = \mathcal{F} \{x(t) \}=\int_{-\infty}^{\infty} x(t)e^{-i2\pi ft}dt \]
Inversion formula \[ x(t) = \mathcal{F}^{-1} \{X(f) \}= \int_{-\infty}^{\infty} X(f)e^{i2\pi ft}df \]
Table of Fourier Transform Pairs
$\textbf{x(t)}$ | Fourier Transform $\textbf{X(f)}$ |
---|---|
$\delta(t)$ | 1 |
$1$ | $\delta(f)$ |
$\delta(t-a)$ | $e^{-i2\pi fa}$ |
$e^{i2\pi a t}$ | $\delta(f-a)$ |
$\cos(2\pi a t)$ | $\frac{1}{2} \delta(f-a) + \frac{1}{2} \delta(f+a)$ |
$\sin(2\pi a t)$ | $-\frac{1}{2i} \delta(f+a) + \frac{1}{2i} \delta(f-a)$ |
$\Pi(t)$ | $\textrm{sinc}(f)$ |
$\textrm{sinc}(t)$ | $\Pi(f)$ |
$\Lambda(t)$ | $\textrm{sinc}^{2}(f)$ |
$\textrm{sinc}^{2}(t)$ | $\Lambda(f)$ |
$e^{-a t}u(t), a > 0$ | $\frac{1}{a + i2\pi f}$ |
$te^{-a t}u(t), a > 0$ | $\frac{1}{(a + i2\pi f)^2}$ |
$e^{-a |t|}$ | $\frac{2a}{a^2 + (2\pi f)^2}$ |
$\frac{2a}{a^2 + t^2}$ | $2 \pi e^{-2 \pi a |f|}$ |
$e^{-\pi t^2}$ | $e^{-\pi f^2}$ |
$u(t)$ | $\frac{1}{2}\delta(f) + \frac{1}{i2\pi f}$ |
$\textrm{sgn}(t)$ | $\frac{1}{i\pi f}$ |
Table of Fourier Transform Properties
Function | Fourier Transform |
---|---|
$a x_{1}(t) + b x_{2}(t)$ | $a X_{1}(f) + b X_{2}(f)$ |
$x(a t)$ | $\frac{1}{|a|} X(\frac{f}{a})$ |
$x(t-a)$ | $e^{-i2 \pi f a }X(f)$ |
$e^{i2 \pi a t}x(t)$ | $X(f-a)$ |
$x(t)*y(t)$ | $X(f)Y(f)$ |
$x(t)y(t)$ | $X(f)*Y(f)$ |
$\frac{d}{dt}x(t)$ | $i2\pi fX(f)$ |
$tx(t)$ | $(\frac{i}{2\pi}) \frac{d}{df}X(f)$ |
$\int_{-\infty}^{t} x(u) du$ | $\frac{X(f)}{i2\pi f} + \frac{1}{2}X(0)\delta (f)$ |
$X(t)=\mathcal{F} \{x(t) \}_{\bigg{|}_{f=t}}$ | $x(-f)= \mathcal{F}^{-1} \{X(f) \}_{\bigg{|}_{t=-f}}$ |